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Abstract—A mixed finite difference-Galerkin method is used to solve the problem of thermal convection in a

two-dimensional horizontal square box heated from below. The Galerkin procedure is applied in the

horizontal direction ; finite differencing is used in the vertical direction. The numerical features of such an

approach are compared, theoretically, with those of usual finite difference and Galerkin methods. Specific

numerical analytical performance data are given for the mixed finite difference—~Galerkin procedure for
several values of Prandtl number, and over a range of Rayleigh numbers.

NOMENCLATURE
s error at mth iteration;
g, gravitational constant ;
h, finite difference step size;
K, number of terms in Galerkin represent-
ation;
L, length of side of convection box ;
N, number of points in finite difference grid;
Nu, Nusselt number;
p, pressure;
Pr, Prandtl number;
Ra, Rayleigh number;
T, temperature;
v, W, velocity components;
¥, 2, spatial coordinates.

Greek symbols

o, coefficient of volumetric expansion;
d, damping factor in iteration scheme;
A, two-dimensional Laplacian, 82 + 02;
& Newton-Kantorovich convergence toler-
ance;
K, thermal diffusivity ;
v, kinematic viscosity ;
¥, stream function.
Subscripts
C, cold;
H, hot ;
i, grid point index ;
J k,m, summation indices;
opt, optimum value;
n,y,z,  partial differentiation.
Superscripts
* perturbation quantity;
0), initial guess.

INTRODUCTION

THE PROBLEM which is considered here is fundamental
in studies of thermal convection in enclosures. The

physical situation is shown in Fig. 1. It consists of a
square box of fluid with insulating sidewalls oriented
perpendicularly with respect to the local gravitational
field, heated on the bottom and cooled on the top. The
top and bottom walls are assumed to be perfectly
conducting in the present treatment. It is well known,
both from theory [1] and from experiment [2, 3] that
until a certain critical temperature difference is ex-
ceeded, heat is transferred vertically from bottom to
top only by conduction. But after the critical tempera-
ture difference is surpassed, convection begins, with a
significant increase in the overall heat transfer.

The basic problem we study here has been con-
sidered by numerous investigators. Finite difference
solutions have been given, for example, by de Vahl
Davis [4] and Wilkes and Churchill [5]. The Galerkin
procedure was used by Catton et al. [6] among others.
In addition, Denny and Clever [7] have provided a
comparison of Galerkin and finite differencing for a
quite similar problem. We are using this widely-
studied problem as a model in presenting a somewhat
different numerical approach, a mixed finite
difference~Galerkin procedure.

This method has been used previously by Mc-
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FiG. 1. Two-dimensional convection in a square box.
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Donough and Catton [8] and Roberts [9] for similar
problems posed on horizontally unbounded domains.
We will give details of applying the method to a
problem in a bounded, two-dimensional region. We
will be concerned only with the supercritical, convect-
ing case, which we treat as fully nonlinear (cf. [7] for
example). Since in our treatment the Galerkin pro-
cedure is applied in only one direction, an opportunity
is provided to give a very simple and complete
exposition of this technique, which is not generally
possible in two- and three-dimensional studies.

GOVERNING EQUATIONS

The system of equations customarily used in treat-
ing problems in thermal convection consists of the
Oberbeck-Boussinesq approximation [10] to the
Navier—Stokes equations, and the thermal energy
equation. The steady two-dimensional form of these
equations suitably scaled is as follows:

v,+w,=0 (1a)

Av —p, = E(UU" + wo,) (1b)
1

Aw — p, + RaT* = B (ow, + ww,) (1)
Sl

AT =T, + wT.. (1d)

Here the asterisk denotes a fluctuation, or pertur-
bation, quantity, i.e. a departure from the mean
temperature profile. The two dimensionless para-
meters which characterize the solutions to equation (1)
are the Rayleigh and Prandtl numbers

ag(Ty — TC)L3

VK

Ra = and Pr=v/k.

The boundary conditions are
v(y,0) = v(y,1) = w(0,z) = w(l,2) =0
v(0,z) = v(1,2) = w(y,0) = w(y,1) =0
T(y,0)= 1, T(y,1) = 0, T,(0,2) = T,(1,z) = 0

(2a)

(2b)
Introducing the stream function y
= w= —_l//y

with cross-differentiation of equations (1b) and (ic),
and subtracting (1b) from (lc¢) leads to

v =

1
A% = RaT} + - [W.Av, —y,Ap.]  (3)

AT = szy - l//yT:’ (4)

The boundary conditions employed for solving (3) are
¥ = ¢, = Oon all boundaries. Those used with (4) are
the temperature conditions given by (2b).

THE MIXED FINITE DIFFERENCE-GALERKIN
PROCEDURE

The method to be used is a combination of finite
differencing and the Galerkin procedure. To better
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accommodate boundary layer structure on the hori-
zontal surfaces and take advantage of the less severe
parameter variation across the region, finite
differencing is done in the vertical direction and a
Galerkin procedure is used for the horizontal direc-
tion. The solutions are represented by

Y(y.z) Z U (2) Dy (3)
K
Z )cosa,y, a,=kn (6)
where
Ciay) k even
D.(v) =
K S(k+1)'z(}') k odd

with C, and S, being the “beam functions” developed
by Harris and Reid [11]. Both sets contain odd and
even subsets that will be an aid in eliminating much
unnecessary computation and storage in the Galerkin
procedure. The 2K + 1 functions i,(z) and T,(z) are
obtained from the finite difference approximation
given below.

Substituting equations (5) and (6) into (3) and (4),
respectively, and forming the inner product of (3) and
D,(y) and (4) with cos q,y yields for k = 1,2,...,K

¢+ b = ~Ra T a AP T, + o
5 Pr

X |:Z Bg'z'l)kl//jl//;n - B(an)k ;jn’;)‘l’ l//m
Jom

+ Bl + B‘”,,«//]np’”} (7

T = — Z an AT+ Tl fork=0 (8

and fork=1,...,K
~a, Ty Z A(k})wj

j
- Z [amAﬁfn’kTm'//} +( A(pzn)k + akAﬁr)n ;n‘l/;]
J.m
In equation (7) the b, are defined as

Ty — aiT, =

{4 keven
Wk odd

with 4, and y, as tabulated in [ 11]. The inner products
are represented by

A = (sinapy, D (10a)
AR = (Djsina,y, cosa,y) (10b)
Bg,‘n’,‘ =<{D;D, ,, D> (10c)
B2, =<D;,D,,, D (10d)

where the subscript y denotes differentiation with
respect to y.

In calculation of the inner products (10), use is made
of the parities of the basis functions (even or odd) to
determine which sets of indices lead to zero values,



Two-dimensional convection in a square box

Consider first A%)). When j is even, sin a;y is odd, and
when m is even D, is even. Therefore A{) is nonzero
only when j and m are of opposite parity. As a result
only half the elements of A{;) need be calculated and
stored.

For inner products having three indices, it is useful
to construct parity tables. The table constructed for
B2 is shown in Table 1. The upper half of the table
contains the various possible combinations of parity,
and the lower half indicates the parity of each of the
functions in the inner product. The product must be
even for the integral to be nonzero. Cases where this
holds are denoted by an asterisk.

From Table 1 and similar information for A2 and
B, it follows that all such inner products are zero,
except for the following two cases: (i) + mis even with
k odd;and (ii)j + mis odd with k even. Thus, each of
the inner products fills only one-half of a three-
dimensional array. This reduction in required storage
was not used in this work ; however, only the nonzero
inner products were calculated.

Analytical integration of the inner products is
possible; but in this work, numerical quadrature by
Simpson’s rule was used. Different mesh sizes were
tested, and the effect on Nusselt number for K = 10is
shown in Table 2. For larger K the sensitivity to mesh
size will increase; for this study, Ay = 001 was
sufficient.

Quasilinearization of equations (7)-(9) is accom-
plished by rewriting these in terms of a linear operator
plus a nonlinear operator and linearizing the nonlinear
operator under the assumption that it is twice Frechét
differentiable [12]. When the linearized equations are
differenced and the result put into matrix form, a
sparse matrix containing

(N (2K + 1))2

terms results. Unfortunately the structure is such that
the sparsity is not easily exploited; and in double
precision, storage requirements exceed the capacity of
most modern computers. For this reason, a modal
quasilinearization is used to diagonalize the matrix.
(For details of this, see McDonough [13].) The storage
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Table 1. Parity table for B{)

& jm

Index Parity

=]
=]
=]
o
<
o

J
m e ¢
k

Function
D;, 0 0 0 € ¢ € o0 ¢
D, ., e e 00 0 e o0 ¢
A 0O 00 & €& € o
* * * *

e, even; o, odd.

Table 2. Dependence of Nu on y-mesh for Az =

0.01, K = 10, ¢ = 0.001, Ra = 10000, Pr = 6.7
Ay 002 0.01 0.005
Nu 1923603 1.523602 1923602

difficulties are then completely eliminated; but the
system of decoupled equations must be iterated to
restore the original coupling effects. Since iterations
are required, anyway, to account for nonlinearities the
coupling is accomplished simultaneously with the
Newton—Kantorovich iterations.

When the solution algorithm is built in this way, the
overall iteration scheme is analogous to a Newton
method in which only the diagonal of the Jacobian is
used. Clearly, for systems having very strongly
diagonally-dominant Jacobians (i.e. weak coupling),
convergence rates are nearly quadratic. As the coupl-
ing becomes stronger, the convergence rate may
deteriorate significantly. It will be shown for the
problem considered here that convergence is slightly
sublinear.

The governing equations become, after modal quasi-
linearization, for temperature when k =0

K
Ty=~ ¥ andn)[ TR +
J.m

and when k=1,2,...,K

T (1)

K
) + 2ak( ) A<2>¢<°>>T' + a{ Y AW —a }Tk

i=1
K K
— (0) (1),0(0) __
= —q, Ty Z Ajk lt[’j

i=1 i=1
=k

© 3 [GARTOV + AR+ AR TN

For the stream function

> [GARTOU +

2 2 0),1,(0
(ajAgcjl)( + akALk})T}( )'Ml ):]

(12)

("N (0) ON 0) ON (0) &N 0)
A =l A ) i - ) U+ bt — ) |
gy oy My

v (S 4 (2

HMYT 25:8 - B

Nz k) ;(0)+<6N2 k>0 11(0)+<(N2 k) ;(u
i M o

(13)
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forallk=1,2,...
K
NP =Ra Y, aqAPTY —

1

K, where

1
Pr

B
kkk

(1)
kkk

4,(0}111'(01

[

"
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0)¢,"(0) + M{O)wz’(oi)

K
+ Y {[(BE ~ B — BE)W + By Oy
ik
+ (B = 2BV + Bl JUi® + BRaui i + By i@}
j
+ Z [B(,z) |/J(0)l//t(0) ngzn’k gc%n),)wv(o)w(()) o+ B(l)wr(o)wn(o) + B“) w(o)wm(o, Y
ek
e} ) 2 2 2 0 1 o
<W) = «Z [(B2) — BE — BE)W® + By )
N, NP K N
( 5‘#" Z [(BZ) — 2BZ)® + B O]
W, 2
éN 2_,( ©) K ’
N, \© K
<6u’;"&> - Z BAIWO, fork=1,2,....K.

The (0) superscripts denote initially guessed values
which are updated at each iteration.

The boundary value problem corresponding to
equations (11}-(13) is solved by a finite difference
method, as discussed in Keller [ 14]. All derivatives are
approximated by centered differences. The
differencing of (11) and (12) is trivial and will not be
discussed further. It is important however to note that
damping (underrelaxation) is required for the tem-
perature equation. Thus, at each iteration, the updated
value at each mesh point is given by

Tt = (1= 8) T + STy
where m, k, and i are the iteration counter, mode
number, and mesh point number. The term ¢ is the
damping factor, and 0 < & < 1. The asterisk refers to
the most recently computed value.

Successive application of the central difference oper-
ator to equation (13) yields

Ciicy + Co¥bioy + Cali + Calbiny + Corias =h*G;
(14)

where the modal index has been suppressed. Here

ON, \@
Cl = h( qlllm )
(‘N 0} LQN
C2=-[4+h( 2"> +h2( 2.k
oy )i avy
AN, N\ N, N\
c —6+2h2< > h bA_(lZ_-i>
} Vi i O\
5N N, \©@
Cy=—|4—h|—=2% ") h"'( “) +
B ON, .
Cs=1 -h(w,,, ) .

\ N
- “h3( 2.k
) (%

|

{7
p3
(

If the set of grid points is {ih}N.,, the difference
equation (15) must be solved on the subset {ih}}"*.
Butfori = landi = N — 1, equation {14) contains
grid function values at points not included in the
original grid point set. These are eliminated using the
derivative boundary conditions on y, via the centered
difference approximation, e.g. at z = 0

lt[]l _w"l

w0

ory_, = i,. Thus, for i = 1, the difference equation
(14) is replaced by

(Cy + CYy + Cayry + Cspy = h*G,

with an analogous expression holding ati = N — 1.

The algebraic system which results from the
difference equations (14) is pentadiagonal, while tri-
diagonal systems arise from the difference approxi-
mations to equations (11) and (12). A general band
Gaussian elimination routine was used to solve each
such system of equations. This approach is very
efficient, requiring only O(N} arithmetic operations.
(The tridiagonal case requires exactly the same num-
ber of operanons as does the Thomas algomhm [16])

I
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aNZ.k
&




Two-dimensional convection in a square box

The overall algorithm employed in solving equation
(3) and (4) is as follows:

0. Compute required Galerkin inner products A,
AP, B$), BE), using Simpson’s rule quadrature.
1. Assign initially-guessed values to the grid of func-
tions Toy, Thpand k= 1,2, .., K on {ih} ;.
2. Form centered difference approximations needed
to calculate Ny, N, and N,
3. Set m = 1, and begin Newton-Kantorovich
iterations.
4. Solve difference approximation to equation (11),
and update values of T7,.
5. Fork=12,...,K:
(a)  Solve difference approximation to equation
{12), and update T}%, and
Solve difference equations (14), and update
l//;((O)’ l//;:(())’ !/J;('I(O)'
6. If m > 1 test convergence.
7. If solution is converged, stop; otherwise setm = m
+ 1, and go to 4.
This algorithm has been coded in double precision
FORTRAN;; all computed results presented herein
were obtained using the IBM 3033 at UCLA.

(b)

NUMERICAL ANALYTICAL TESTS

Besides convergence of the numerical approxi-
mations to the Galerkin inner products, there are three
limit processes whose convergence must be demon-
strated before we may accept the computed sets of
numbers as solutions to the problem being considered.
They are: (1) convergence of the grid functions as h —
0; (2) convergence of the Newton—Kantorovich iter-
ations as ¢ — 0; and (3) convergence of the Fourier
series, equations (5) and (6) as K — .

Grid function convergence

Calculations were carried out with Ra = 20000, Pr
= 0.71, Ay = 0.01 and K = 4 with the Newton-
Kantorovich convergence tolerance ¢ = 0.001. The
values of ¢, and T, correspond roughly to their
maxima in magnitude over the z-grid except for T,
whose maximum is the boundary value. Table 3 shows
the computed results and the Nusselt number.
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It can be easily seen that the rate of convergence is
second order and that the Nusselt number for the finest
mesh is accurate to about two decimal places (the
extrapolated value is 1.880777). Calculations reported
in the following paragraphs used h = 0.01 even though
h = 0.0125 is sufficient. The dominant error can be
seen to be from truncation of the Fourier series.

Newton—Kantorovich iteration convergence

A precise theoretical rate of convergence cannot be
easily given because of our use of modal decom-
position. Further, it follows from the Newton-
Kantorovich theorem [12] that convergence may
be strongly influenced by Ra, Pr, 4, initial guesses,
and the norm by which convergence is measured.
Results will be given to show the influence of each of
these parameters.

Since an exact solution is not known, the error is not
known. For this work we use

€n = max max (g m — g,
zy

TE =Tl (9)

where z; € {ih}!."'. Figure 2 is a log~log plot of e,,,, ; v§
e,, for m = 1-30. For this run, Ra = 20000, Pr = 6.7,
K =4,Ay = 001,56 = 0.5and k = 0.01. Points lic both
above and below the line ¢, ; = ¢, indicating that
convergence is not monotone. The dashed line cor-
responds to

ey = 048920968,

Since the exponent is less than one, convergence is
slightly sublinear but the error is approximately halved
at each iteration.

To measure convergence rate as a function of 4, the
error tolerance, ¢, was fixed at 10”3 and the number of
iterations necessary for each value of 4 was obtained.
Results are shown in Fig. 3 for Ra = 10000 and 20 000.
It can be seen that the choice of J is important; the
number of iterations is very sensitive to & when
8> Sopye

With § = 04, K = 4, Ay = 001 and h = 0.01
calculations were made at several values of Pr and Ra.
The number of iterations needed for convergence is

Table 3. Grid function convergence

Grid function h =01 h =005 h =0.025 h=00125
T(0.3) 5.542195-1 5.615725-1 5.636105-1 5.640501-1
T(0.5) —1.350705-1 —1.304509-1 —1.292512-1 —1.289492-1
T,(0.2) 4.067096-2 3.582110-2 3.458850-2 3.434991-2
T5(0.5) 6.835981-3 6.943724-3 6.973215-3 6.980665-3
T,0.3) —3406716-3 —3.127656-3 —3.063978-3 —3.048376-3
¥,{(0.3) 6.050797-1 5.249729-1 5.037742-1 5.000764-1
¥,(0.5) 3.097098-0 3.007878-0 2.982816-0 2.976444-0
¥1(04) —3.690025-2 —3.189531-2 —3.060985-2 —3.033642-2
1#4(0.2) 1.368411-1 1.057800-1 9.837934-2 9.679529-2
Nu 2.104220 1.920818 1.888373 1.882676

Note: in this table numbers are represented in exponential form, but without the base;

Le. 5.542-1 = 5542 x 107%
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shown in Table 4. It can be seen that the number of
iterations is not very sensitive to either Ra or Pr, at
least at moderate values of Ra, for § < J,,.

The initial guess used in the calculations presented
above was

Ydz) =0 (16a)
1
T{z) = —sin(az), k=12....K (16b)
A
and
T . sin 27z (16c)
olz)=1—2z— 100

Figure 4 provides a comparison of the initial guesses to
T, with the solution obtained at Ra = 20000, Pr =
6.7, and K = 4 after 25 iterations. It is clear that this
guess was a poor one.

50 —
\  Ra-20000 |
40 - ° .
|
") 1
s |
© v
2 30l !
- .
3 !
!
20 |- / ’
Ra =10000 v.‘\' ’
LARN
. ,
Se.
0 [ 1 I J A

[eX} 02 03 04 05 06 07 08

Damping factor, 3

F1G. 3. Number of iterations vs damping factor.
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Table4. Effect of Pron required number of
iterations

Number of iterations

Pr Ra=10000 Ra = 20000

0.71 23 22
6.7 22 25
70.0 25 21
700.0 25 23

To demonstrate the impact of the initial guess,
calculations were made for this same case using
equation (16) to obtain a solution at Ra = 10000, and
at 15 000. These solutions were then used as the initial
guess for a solution at Ra = 20000. Table 5 summar-
izes these results. It is clear that improved initial
guesses accelerate convergence. Moreover, for Ra >
40000 it is not possible to obtain convergence using
equation (16), and “continuation” is required.

Changing the norm by which convergence is mea-
sured will also alter convergence rate. The convergence
criterion given by equation (15) requires that solutions
to (3) and (4) be uniformly continuous on [0, 1] x [0,
1]. A frequently used weaker form of convergence is
convergence in Nusselt number (it can be shown that
(Nu — 1)'? provides a measure of convergence similar
to the L’-norm, which is natural to a Galerkin
procedure [13]). A comparison of the number of
iterations required to satisfy the same tolerance, ¢ =
0.0001, for the norm given by equation (15) and the
convergence measure

oy = |Nu™* b — Ny™| (17)

is given in Table 6 for cases with Pr = 0.71.

As Ra increases, the number of iterations for the
pointwise norm becomes significantly greater than for
the L?-norm. This is not unexpected since L2-solutions
need not be continuous, while pointwise convergence
implies uniformly continuous solutions. Higher Ra
leads to a more complicated flow structure. At higher
Pr, the Ra at which the two norms differ is higher. For
example at Pr = 6.7, and Ra = 35000, 39 and 40
iterations were required for L? and pointwise con-
vergence, respectively.

Fourier series convergence

To provide numerical evidence of existence (and
uniqueness) of solutions to equations (3) and (4) it
must be shown that convergence of the Fourier
representations is absolute and uniform. Since the
basis functions in (5) and (6) are uniformly bounded,
we define the pointwise norm,

11

and it follows that

, = max|f(y, 2)|

i

T2 PRI I AP

(18a)
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IT|.<Cy ¥ Tl (18b)
k=0

where C, and C, are normalization constants.

If the series on the right-hand side of equation (18)
converge, they do so absolutely and uniformly, by
definition of || - | .. Thus, convergence is demonstrated
by showing that ||y | , and || T || , are of the order k7
with p > 1. Calculations were carried out for K up to
10 in the Fourier representations. The results are
shown in Fig. 5 for Ra = 40000 and Pr = 0.71. The
series clearly appear to converge.

The points plotted in Fig. 5 are obtained by scaling
the max-norm of each mode with the max-norm of the
mode beyond which convergence is monotone. For the
1, this was mode # 1 ; and for the T, it was mode #5.
The values of k in the figure are referenced to the mode
used for scaling. We have plotted only results for odd
modes because these converge more slowly. The i,
converge more rapidly than do the T,; |y,
O(107°) cannot be shown in the scale of the figure.
Convergence of || T, | ,, goes somewhat faster than 1/k,

~

I

Table 5. Effect of initial guess for solutions at Ra = 20000,

Pr = 6.7
Initial guess Number of iterations
Equation (16) 25
Solution at Ra = 10000 20
Solution at Ra = 15000 13

so we expect that the series for temperature is ab-
solutely convergent.

The absolute convergence of the series represen-
tations (5) and (6) shows that the rearrangements
needed to obtain equations (7)—(9) are justified. Hence,
the right-hand sides of these equations are well defined.
This is necessary, but not sufficient, for uniqueness of
solutions for (7)-(9), and thus also for (3) and (4).
Rigorous sufficient conditions are somewhat difficult
to obtain, but in fact have been given for the infinite
domain problem for low values of Ra by Rabinowitz
[17]. The basic approach was to show that the
nonlinear integral equations corresponding to equa-
tions (7) and (9) provide a contractive mapping of a
certain Sobolev space into itself. Another possible
approach is to employ extensions of the maximum

Table 6. Number of iterations
needed for pointwise- and L2-
convergence, Pr = 0.71

Number of iterations

Ra Pointwise L?

5000 27 26
10000 25 24
15000 31 29
20000 31 29
25000 31 31
30000 34 28

35000 42 37
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principle theories given in Protter and Weinberger
[18]. We obtain numerical evidence of at least local
uniqueness by computing the same solution with
several different initial guesses.

If we accept the conclusions reached from Fig. 5, we
can consider the error incurred by truncation of the
series after K terms. Table 7 shows Nu as a function of
K for several values of Pr at Ra = 40000 (h = 0.01, Ay
= 001, ¢ = 0001 and 6 = 04) with pointwise
convergence required. Convergence is clearly demon-
strated. Theory presented by Gottlieb and Orszag
[19] predicts that the convergence should be infinite-
order, and the table gives some indication of this.

Two interesting aspects of the results are that lower
Pr does not converge as fast as high Pr, and con-
vergence is not monotone. The behavior with Pr is not
unexpected since the nonlinearity increases with de-
creasing Pr, as does the potential for turbulence. The
lack of monotone convergence was unexpected, but
also found by Catton et al. [ 6], and Denny and Clever
[7].Itis worth noting that for Pr = 6.7, the value of Nu
for K = 2 is within a fraction of a per cent of the
converged value. Hence, if details of the flow and
temperature field are not required, a two term approxi-
mation is sufficient. Further, for Ra = 40000 a four
term approximation yields results well within experi-
mental accuracy.

Table 7. Nu dependence on number of terms in Galerkin
approximation, Ra = 40000

Nu
pPr K=2 K=4 K= K=8 K=10
071 18236 21364 21423 21471 21514
6.7 2.8387 28236 28356 28393 28419
70.0 29986 29975 29887 29926 29924
700.0 30128 29900 3.0028 3.0064  3.0062
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COMPARISON WITH OTHER METHODS

A comparison between the mixed finite difference-
Galerkin, Galerkin, and finite difference methods is
made for computer storage requirements, arithmetic
operation count and program set-up complexity. The
comparisons are in many respects qualitative because
only order of magnitude estimates are available in the
first two categories, and the last is mostly subjective.

Storage requirements

For a pure Galerkin solution it is not uncommon to
use on the order of 10? trial functions. This leads to
about 10° words of storage for the inner products
alone. For finite difference methods, in particular for
methods using ADI, storage of the grid functions
themselves usually determines the overall storage
requirements. The matrices corresponding to the lin-
ear systems to be solved are band matrices. Hence,
even for a 10* x 10? grid only about 10* words of
storage are required. Storage requirements for the
mixed method are 10°-10°% words if modal decom-
position is not used. For the method used here, the
main storage requirement comes from the combi-
nation of grid function solutions to the Galerkin
ODEs and the Galerkin inner products. The first of
these is O(N - K) for an N-point finite difference grid
and a K-term Galerkin approximation, while the
second is O(K?). For K < 50 and N < 100, storage
requirements are of the same order as for a full finite
difference grid.

Arithmetic operations

For the Galerkin procedure, the arithmetic comes
from a calculation of inner products, construction of
matrix elements and solution of the system of equa-
tions. The first of the operations is done only once, but
requires at least O(K ®) arithmetic operations. Set up of
the matrices usually requires O(K?) arithmetic oper-
ations. Solution of the system of equations is carried
out iteratively, and involves O(K?®) operations per
iteration. If good initial guesses are used, only a few
iterations are needed in a Newton’s method solution
algorithm.

A finite difference method onan M x N grid using
an ADI scheme and solving quasilinearized equations
{equivalent to Newton’s method) will require the
solution of N linear systems having O(M) elements,
and M linear systems having O(N) elements. Thus,
O(M - N)arithmetic operations are needed to solve the
linear systems, provided a direct band-elimination
method is employed. In addition, O(M - N) operations
are needed to update the linear systems at each
iteration. Hence, the total operation count for a
solution is O(M - N) if Newton’s method converges
rapidly.

A mixed finite difference-Galerkin procedure re-
quires that O(K) linear systems be solved on an N-
point finite difference grid at each iteration. The system
of equations is sparse and requires O(N) arithmetic
operations for solution, and O(N - K?) arithmetic
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Table 8. Summary of theoretical comparisons

Method Storage Arithmetic operations Set-up time
Galerkin ~O[(KLY’] ~O[(KL?)] 8 days*
Finite difference (ADI) ~O(MN) ~QO(MN) 5 days
Mixed finite

difference-Galerkin
~0(NK + K?) ~0(NK + NK?3) 3 days*

* Quadrature used to calculate inner products.

operations for set up for each K. In addition, O(K?3)
operations are needed to compute the inner products.
Therefore, O(NK + NK?® + K3) arithmetic oper-
ations are needed to obtain a solution.

Program complexity

To compare the three methods, all the equations
needed to implement a computer code were derived,
and put into a form ready for coding. Only the mixed
finite difference—Galerkin procedure was coded and
executed. The other two codes will be produced later
for more detailed comparisons. Here we only point out
the difficulties one might encounter with each of the
methods.

The two major steps in the Galerkin method are
calculation of inner products and solution of linear
systems. The inner products are multiple integrals and
only calculable analytically for very simple basis sets.
The parity tables used here are very difficult to
construct if more than one dimension must be con-
sidered. The matrices representing the linear systems
are often non-sparse and frequently mildly ill-
conditioned. Iterative methods cannot be applied, and
roundoff error can be difficult to control. Pivoting
strategies or iterative improvement should be em-
ployed. Preparation of the equations for coding re-
quired eight days.

The major difficulties in implementing a finite
difference scheme are linearization of the nonlinear
equations and treatment of the boundary conditions.
Quasilinearization of partial differential equations
requires very tedious algebraic manipulations. To set
up the equations for an ADI finite difference scheme
took five days.

The problems encountered in the mixed method
include those found in both of the other methods. They
are, however, easier to deal with because the space
dimensions have been reduced. Determining null inner
products from parity tables is easily accomplished.
Quasilinearization for Galerkin ODEs is simpler than
for partial differential equations. The form of the
Galerkin ODEs is similar to the ADI equations
resulting from the finite difference method, and the
boundary conditions present similar difficulties. The
mixed method required three days to prepare for
coding.

Table 8 summarizes the findings of this section. It is
not possible to give precise performance comparisons
at this time. We will, however, use the results of [7] to

Table 9. Time per iteration vs number of modes for Ra =
20000, Pr = 0.71, Ay = 0.01 and ¢ = 0.001

Number of
modes 2 4 6 8 10
Time (s) 0059 0.171 0380 0756 1.332

infer that KL ~ 60 and M = N = 50 to achieve the
three place accuracy in Nu obtained here for high Pr
with N ~ 100 and K = 8. For the Galerkin method,
approximately 2 x 10° words of storage and arith-
metic operations per iteration are needed. The ADI
finite difference scheme requires only about 10* words
of storage and 5 x 10° arithmetic operations. The
mixed method requires about 8 x 10° words of
storage and 10° arithmetic operations per iteration.

In terms of storage requirements, the mixed method
and the ADI finite-difference method compare favor-
ably and are superior to the Galerkin procedure.
The number of arithmetic operations for the mixed
method is greater than for a finite difference scheme by
a factor of two or so; both are considerably less than
for a full Galerkin procedure. Thus, the performance of
the mixed method appears to fall between that of the
ADI finite difference scheme and a full Galerkin
procedure. The mixed method is, however, the easiest
of the three to implement. Further, acceptance of
slightly less accuracy, K = 2 instead of 8, shifts the
balance in favour of the mixed method.

Finally, in Table 9, some timing data are presented
for direct comparison with other methods. An IBM
Extended-H FORTRAN compiler in optimizing mode
was used to generate the object code for these runs. The
times listed in the table are average central processing
seconds per iteration for runs on an IBM 3033,
obtained by dividing total execution time by the
number of iterations. With 4 (i.e. N) fixed the increase
in the number of operations should increase like K3,
see Table 8. The data of Table 9 seem to indicate an
O(K?) variation; but experience in the unbounded
domain problem [13] shows that this holds only when
K is small enough that the set up operations are still a
significant fraction of the total operation count.
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UNE PROCEDURE MIXTE GALERKIN-DIFFERENCE FINIE POUR LA CONVECTION
BIDIMENSIONNELLE DANS UNE CAVITE CARREE

Résumé—Une méthode mixte Galerkin—différence finie est utilisée pour résoudre le probléme de la

convection thermique dans une cavité carrée, horizontale, bidimensionnelle et chauffée par le bas. La

procédure Galerkin est appliquée dans la direction horizontale, les différences finies dans la direction

verticale. Les résultats numériques de cette approche sont comparés théoriquement a ceux des méthodes

usuelles des différences finies et de Galerkin. Des données spécifiques numériques et analytiques sont données

pour cette procédure mixte dans le cas de plusieurs valeurs de nombre de Prandtl et pour un domaine de
nombre de Rayleigh.

EIN GEMISCHTES DIFFERENZEN- UND GALERKIN-VERFAHREN FUR
ZWEIDIMENSIONALE KONVEKTION IN EINEM QUADRATISCHEN BEHALTER

Zusammenfassung—Mit ecinem gemischten Differenzen- und Galerkin-Verfahren wird der Fall der

thermischen Konvektion in einem zweidimensionalen quadratischen Behilter, der von unten beheizt wird,

berechnet. Das Galerkin-Verfahren wird in horizontaler Richtung angewandt, das Differenzenverfahren in

vertikaler Richtung. Die numerischen Grundziige eines solchen Ansatzes werden theoretisch mit denen

iiblicher  Differenzen- bzw. Galerkin-Verfahren verglichen.  Spezielle numerisch-analytische

Rechenergebnisse aus dem gemischten Differenzen- und Galerkin-Verfahren werden fiir einige Prandtl-
Zahlen und iiber einen gewissen Rayleigh-Zahlenbereich vergelegt.

UCI1I0J/Ib30OBAHHUE METOJA KOHEYHBIX PABHOCTEH COBMECTHO C METOJ0OM
FAJIEPKUHA /11 PEIMEHWUA 3A0AYH JIBYMEPHOW KOHBEKLIMU B KBAJ/IPATHOM
OBJIACTH

AHHOTAUMA — METOL KOHEYHbIX pa3HOCTel B COYETAHMM ¢ MeTooM [ajlepKHHA MCIONb3YeTCs s

PELIEHHS 3aJa4U TEMIOBOH KOHBEKLUMH B IBYMEPHOH rOPH3OHTAILHOM HarpeBaeMoil CHH3y KBaapaTHOM

obnactu. Metoa anepkuHa NpUMEHNETCS I8 TOPHU3OHTABHONO HANPABACHHMS, a4 METOA KOHEUHbIX

paszHocTell — Ans BepTHKaibHOro. ITpOBEEHO YMCIIEHHOE CPaBHEHHE TAKOrO NOAXONA € KAKABIM U3

YKa3aHHbIX METOIOB B OTACAbHOCTH. [lpeacTaByieHbl Pe3y/ibTAThl peUIeHHs IS HECKOJIbKMX 3HAUEHH
uucna lNpauaras u 6osnbluoro auanazona yucen Peses.



