
ht. J. Hear Mass Transfer. Vol. 25, No. 8, pp. 1137-1146, 1962 C017-9310/82/081137-10 $03.00/O 

Printed in Great Britain 0 1982 Pergamon Press Ltd. 

A MIXED FINITE DIFFERENCE-GALERKIN 
PROCEDURE FOR TWO-DIMENSIONAL 

CONVECTION IN A SQUARE BOX 

J. M. MCDONOUGH and I. CATTON 

School of Engineering and Applied Science, University of California Los Angeles, 
Los Angeles, CA 90024, U.S.A. 

(Received fir publication 22 January 1982) 

Abstract-A mixed finite difference-Galerkin method is used to solve the problem of thermal convection in a 
two-dimensional horizontal square box heated from below. The Galerkin procedure is applied in the 
horizontal direction; finite ditferencina is used in the vertical direction. The numerical features of such an 
approach are compared, theoretically,with those of usual finite difference and Galerkin methods. Specific 
numerical analytical performance data are given for the mixed finite difference-Galerkin procedure for 

several values of Prandtl number. and over a range of Rayleigh numbers. 

NOMENCLATURE 

e Ill, 
97 
h, 
K 

L, 
N, 
Nu, 
Pt 
Pr, 
Ra, 
T, 
0, w, 
Y, z, 

error at mth iteration ; 
gravitational constant ; 
finite difference step size ; 
number of terms in Galerkin represent- 
ation ; 
length of side of convection box ; 
number of points in finite difference grid; 
Nusselt number; 
pressure ; 
Prandtl number; 
Rayleigh number ; 
temperature; 
velocity components; 
spatial coordinates. 

Greek symbols 

x, coefficient of volumetric expansion ; 
6, damping factor in iteration scheme; 

A, two-dimensional Laplacian, 83 + 8: ; 
f4 Newton-Kantorovich convergence tOler- 

ante ; 
K, thermal diffusivity ; 
V, kinematic viscosity ; 
*3 stream function. 

Subscripts 

C, cold ; 
H, hot ; 
2, grid point index ; 
i, k, m, summation indices; 

opt, optimum value; 

n, Y, z, partial differentiation. 

Superscripts 

;,, 
perturbation quantity; 
initial guess. 

INTRODUCTION 

THE PROBLEM which is considered here is fundamental 
in studies of thermal convection in enclosures. The 

physical situation is shown in Fig. 1. It consists of a 
square box of fluid with insulating sidewalls oriented 
perpendicularly with respect to the local gravitational 
field, heated on the bottom and cooled on the top. The 
top and bottom walls are assumed to be perfectly 
conducting in the present treatment. It is well known, 
both from theory [l] and from experiment [2,3] that 
until a certain critical temperature difference is ex- 
ceeded, heat is transferred vertically from bottom to 
top only by conduction, But after the critical tempera- 
ture difference is surpassed, convection begins, with a 
significant increase in the overall heat transfer. 

The basic problem we study here has been con- 
sidered by numerous investigators. Finite difference 
solutions have been given, for example, by de Vahl 
Davis [4] and Wilkes and Churchill [5]. The Galerkin 
procedure was used by Catton et al. [6] among others. 
In addition, Denny and Clever [7] have provided a 
comparison of Galerkin and finite differencing for a 
quite similar problem. We are using this widely- 
studied problem as a model in presenting a somewhat 
different numerical approach, a mixed finite 
difference-Galerkin procedure. 

This method has been used previously by Mc- 

.Tc 

FIG. 1. Two-dimensional convection in a square box. 
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Donough and Catton [8] and Roberts [9] for similar 
problems posed on horizontally unbounded domains. 
We will give details of applying the method to a 
problem in a bounded, two-dimensional region. We 
will be concerned only with the supercritical, convect- 
ing case, which we treat as fully nonlinear (cf. [7] for 
example). Since in our treatment the Galerkin pro- 
cedure is applied in only one direction, an opportunity 
is provided to give a very simple and complete 
exposition of this technique, which is not generally 
possible in two- and three-dimensional studies. 

GOVERNING EQUATIONS 

The system of equations customarily used in treat- 
ing problems in thermal convection consists of the 
Oberbeck-Boussinesq approximation [ 10) to the 
Navier-Stokes equations, and the thermal energy 
equation. The steady two-dimensional form of these 
equations suitably scaled is as follows: 

cy + w, = 0 (la) 

Au - pY = ;(t~r~ + WV,) (lb) 

Aw - p, + RaT* = ~(IIW~ + wwz) (lc) 

AT = UT, + wT,. (Id) 

Here the asterisk denotes a fluctuation, or pertur- 
bation, quantity, i.e. a departure from the mean 
temperature profile. The two dimensionless para- 
meters which characterize the solutions to equation (1) 
are the Rayleigh and Prandtl numbers 

Ra = crg(T, - TcW3 
and Pr = V/K. 

VK 

The boundary conditions are 

u(y,O) = u(y, 1) = w(O,z) = w(l,z) = 0 

u(O,z) = u(l,z) = w(y,O) = w(y, 1) = 0 
(2a) 

T(y,O) = 1, T(y, 1) = 0. T,(O,z) = T,(l,s) = 0. (2b) 

Introducing the stream function II, 

u=*:,w= -$Y 

with cross-differentiation of equations (lb) and (lc), 
and subtracting (lb) from (lc) leads to 

AZ+ = RaT: + k[tjZA$, - $,A$,] (3) 

AT = $,T, - $,TZ. (4) 

The boundary conditions employed for solving (3) are 
$ = II/, = 0 on all boundaries. Those used with (4) are 
the temperature conditions given by (2b). 

THE MIXED FINITE DIFFERENCE-GALERKIN 
PROCEDURE 

The method to be used is a combination of finite 
differencing and the Galerkin procedure. To better 

accommodate boundary layer structure on the hori- 
zontal surfaces and take advantage of the less severe 
parameter variation across the region. finite 
differencing is done in the vertical direction and a 
Galerkin procedure is used for the horizontal direc- 
tion. The solutions are represented by 

$(Y,Z) = c $kGPk(!.) (5) 
r-1 

T(y,z) = i T,(z)cosa,y, ak = kn (6) 
k-0 

where 

D,(Y) = 
C,.,(Y) k even 

%+ wo.‘) k odd 

with C, and S, being the “beam functions” developed 
by Harris and Reid [ll]. Both sets contain odd and 
even subsets that will be an aid in eliminating much 
unnecessary computation and storage in the Galerkin 
procedure. The 2K + 1 functions $,Jz) and T&z) are 
obtained from the finite difference approximation 
given below. 

Substituting equations (5) and (6) into (3) and (4), 
respectively, and forming the inner product of (3) and 
D,(y) and (4) with cos a,y yields for k = 1,2,. , K 

Tg = - 1 a,A$‘[T,,& + Ta$j]. for k = 0 (8) 
j.m 

and fork = l,...,K 

Tl - a: T, = - a,Tb 1 A\:)$, 

- c [a,A12,)kT,,,& + (a,A$f& + a,A$,) Tm$j]. r (9) 

In eqfation (7) the b, are defined as 

b, s 
i 

1, k even 

pr k odd 

with 1, and pk as tabulated in [l 11. The inner products 
are represented by 

A$) = (sin ajy, D,J (loa) 

Ack = (Dj sin a,y, cos a,y) (lob) 

B$,\ = (DjDm,+, Ok) (I&) 

B$c E <Dj.pDnt.~y, Dk) (104 

where the subscript y denotes differentiation with 
respect to y. 

In calculation of the inner products (lo), use is made 
of the parities of the basis functions (even or odd) to 
determine which sets of indices lead to zero values, 
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Consider first A$ When j is even, sin ajy is odd, and 
when m is even D, is even. Therefore A$) is nonzero 
only when j and m are of opposite parity. As a result 
only half the elements of A$,) need be calculated and 
stored. 

For inner products having three indices, it is useful 
to construct parity tables. The table constructed for 
I@, is shown in Table 1. The upper half of the table 
contains the various possible combinations of parity, 
and the lower half indicates the parity of each of the 
functions in the inner product. The product must be 
even for the integral to be nonzero. Cases where this 
holds are denoted by an asterisk. 

From Table 1 and similar information for A$,\ and 
B& it follows that all such inner products are zero, 
except for the following two cases : (i)j + m is even with 
k odd; and (ii)j + m is odd with k even. Thus, each of 
the inner products fills only one-half of a three- 
dimensional array. This reduction in required storage 
was not used in this work ; however, only the nonzero 
inner products were calculated. 

Analytical integration of the inner products is 
possible; but in this work, numerical quadrature by 
Simpson’s rule was used. Different mesh sizes were 
tested, and the effect on Nusselt number for K = 10 is 
shown in Table 2. For larger K the sensitivity to mesh 
size will increase; for this study, by = 0.01 was 
sufficient. 

Quasilinearization of equations (7)-(9) is accom- 
plished by rewriting these in terms of a linear operator 
plus a nonlinear operator and linearizing the nonlinear 
operator under the assumption that it is twice Frechet 
differentiable [12]. When the linearized equations are 
differenced and the result put into matrix form, a 
sparse matrix containing 

(N*(ZK+l))i 

terms results. Unfortunately the structure is such that 
the sparsity is not easily exploited; and in double 
precision, storage requirements exceed the capacity of 
most modern computers. For this reason, a modal 
quasilinearization is used to diagonalize the matrix. 
(For details of this, see McDonough [ 131.) The storage 

Table 1. Parity table for I$, 

Index Parity 

j eeeoooeo 
m eeoooeoe 
k eoooeeeo 

Function 

Dj.y oooeeeoe 
D m.m eeoooeoe 
4 eoooeeeo 

* * * * 

e, even : o, odd. 

Table 2. Dependence of Nu on y-mesh for AZ = 
0.01, I< = 10. I: = 0.001, Ra = 10000, Pr = 6.7 

AY 0.02 0.01 0.005 

Nu 1.923 603 1.923 602 1.923 602 

difficulties are then completely eliminated; but the 
system of decoupled equations must be iterated to 
restore the original coupling effects. Since iterations 
are required, anyway, to account for nonlinearities the 
coupling is accomplished simultaneously with the 
~ewton~Kantorovich iterations. 

When the solution algorithm is built in this way, the 
overall iteration scheme is analogous to a Newton 
method in which only the diagonal of the Jacobian is 
used. Clearly, for systems having very strongly 
diagonally-dominant Jacobians (i.e. weak coupling), 
convergence rates are nearly quadratic. As the coupl- 
ing becomes stronger, the convergence rate may 
deteriorate significantly. It will be shown for the 
problem considered here that convergence is slightly 
sublinear. 

The governing equations become, after modal quasi- 
linearization, for temperature when k = 0 

T;; = - 2 Q,A;~[T$“$;!~’ + T’“‘@‘] (11) 
i.m 

and when k = 1. 2,.. ., K, 

(12) 
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for all k = 1, 2 ,..., K, where 

SN,,, w i-4 s$!l;’ 
= - $, 3~~~~~), for k = 1, 2,. . ., K. 

__~_____.__ .-_.---. .~~------- 

The (0) superscripts denote initially guessed values If the set of grid points is {ihf~=,, the difference 
which are updated at each iteration. equation (15) must be solved on the subset {ih) y:i-,‘. 

The boundary value problem corresponding to But for i = 1 and i = N - 1, equation (14) contains 

equations (11)-(X3) is solved by a finite difference grid function values at points not included in the 
method, as discussed in Keller [14]. All derivatives are original grid point set. These are eliminated using the 

approximated by centered differences. The derivative boundary conditions on $, via the centered 
differencing of (11) and (12) is trivial and will not be difference approximation, e.g. at z = 0 

discussed further. It is important however to note that 
damping (underrelaxation) is required for the tem- $1 -+--*.=, 

perature equation. Thus, at each iteration. the updated 2h 

value at each mesh point is given by or tc/ _ 1 = 11, ,. Thus, for i = 1, the difference equation 

T(m+l) = (1 _ 6)Tiyj + 6Ti;;-lj* ( 14) is replaced by 
k.1 

where m, k, and i are the iteration counter, mode (C, + C,)+, + C,$, f C,$, = h4G, 

number, and mesh point number. The term 6 is the with an analogous expression holding at i = N - 1. 
damping factor, and 0 < 6 2 1. The asterisk refers to The algebraic system which results from the 
the most recently computed value. difference equations (14) is ~ntadiagonal, while tri- 

Successive application of the central difference oper- diagonal systems arise from the difference approxi- 
ator to equation (13) yields mations to equations (11) and (12). A general band 

C,ll/i-, + C,+i-l + C,ll/i + C,+i+l + cf$i+-2 =‘14Gi 
Gaussian elimination routine was used to solve each 

such system of equations. This approach is very 
(14) efficient, requiring only O(N) arithmetic operations. 

where the modal index has been suppressed. Here 
(The tridiagonal case requires exactly the same num- 
ber of operations as does the Thomas algorithm [ 163). 
,~__ ~~~~~ ._ .__ .~~ ._~ ~. .---- --_ -- -- ..-...-. ..” 



Two-dimensional convection in a square box 1141 

The overall algorithm employed in solving equation 
(3) and (4) is as follows: 

0. 

1. 

2. 

3. 

4. 

5. 

6. 
7. 

Compute required Galerkin inner products A$,!, 

A$,\, B$,j, B$,\ using Simpson’s rule quadrature. 
Assign initially-guessed values to the grid of func- 
tions T,,, T,., and I+&, k = 1, 2,. .., K on {ih)/“,. 
Form centered difference approximations needed 
to calculate N$‘), IV\:\, and NY:. 
Set m = 1, and begin Newton-Kantorovich 
iterations. 
Solve difference approximation to equation (1 l), 
and update values of T@ 
Fork=12 E<: , ,..‘, 
(a) Solve difference approximation to equation 

(12), and update T$‘), and 
(b) Solve difference equations (14), and update 

$$O), #O’, $@O’. 

If m > 1 test convergence. 
If solution is converged, stop; otherwise set m = m 
+ l,andgoto4. 

This algorithm has been coded in double precision 
FORTRAN ; all computed results presented herein 
were obtained using the IBM 3033 at UCLA. 

NUMERICAL ANALYTICAL TESTS 

Besides convergence of the numerical approxi- 
mations to the Galerkin inner products, there are three 
limit processes whose convergence must be demon- 
strated before we may accept the computed sets of 
numbers as solutions to the problem being considered. 
They are: (1) convergence of the grid functions as h --) 
0; (2) convergence of the Newton-K~torovich iter- 
ations as I: + 0; and (3) convergence of the Fourier 
series, equations (5) and (6) as I( + x~. 

Grid function convergence 
Calculations were carried out with Ra = 2OOC0, Pr 

= 0.71, Ay = 0.01 and EC = 4 with the Newton- 
Kantorovich convergence tolerance E = 0.001. The 
values of +, and ?;, correspond roughly to their 
maxima in magnitude over the z-grid except for To 
whose maximum is the boundary value. Table 3 shows 
the computed results and the Nusselt number. 

It can be easily seen that the rate of convergence is 
second order and that the Nusselt number for the finest 
mesh is accurate to about two decimal places (the 
extrapolated value is 1.880 777). Calculations reported 
in the following paragraphs used h = 0.01 even though 
h = 0.0125 is sufficient. The dominant error can be 
seen to be from truncation of the Fourier series. 

Newton-Kantorovich iteration convergence 
A precise theoretical rate of convergence cannot be 

easily given because of our use of modal decom- 
position. Further, it follows from the Newton- 
Kantorovich theorem [12] that convergence may 
be strongly influenced by Ra, Pr, S, initial guesses, 
and the norm by which convergence is measured. 
Results will be given to show the influence of each of 
these parameters. 

Since an exact solution is not known, the error is not 
known. For this work we use 

where zi E { ih}rCl’. Figure 2 is a log-log plot of e,,, + 1 vs 
e, form = l-30. For this run, Ra = 20000, Pr = 6.7, 
K = 4, Ay = 0.01,6 = 0.5 and h = 0.01. Points lie both 
above and below the line e,,, + , = e,, indicating that 
convergence is not monotone. The dashed line cor- 
responds to 

e m+ 1 = 0.489ez.968. 

Since the exponent is less than one, convergence is 
slightly sublinear but the error is approximately halved 
at each iteration. 

To measure convergence rate as a function of 6, the 
error tolerance, c, was fixed at 10e3 and the number of 
iterations necessary for each value of 6 was obtained. 
Results are shown in Fig. 3 for Ra = 10 000 and 20 000. 
It can be seen that the choice of 6 is important; the 
number of iterations is very sensitive to 6 when 

6 ) &p,. 
With 6 = 0.4, K = 4, Ay = 0.01 and h = 0.01 

calculations were made at several values of Pr and Ra. 
The number of iterations needed for convergence is 

Table 3. Grid function convergence 

Grid function h =O.l h = 0.05 h = 0.025 h = 0.0125 

7’,(0.3 ) 5.542195-1 5.615725-l 5.636105-l 5.640501-l 
T, (0.5) -1.350705-l - 1.304509-1 -1.292512-l - 1.289492- 1 
7’,(0.2) 4.067096-2 3.582110-2 3.458850-2 3.434991-2 
T,(O.S) 6.835981-3 6.943724-3 6.973215-3 6.980665-3 
T JO.31 - 3.406716-3 - 3.127656-3 - 3.063978-3 - 3.048376-3 
tiI(O.3) 6.050797- 1 5.249729-l 5.037742-1 5.000764-l 

$zI:::; 
3.097098-O 3.007878-O 2.982816-O 2.976444-O 

&0.2) - 3.690025-2 1.368411-1 -3.189531-2 1.057800-l - 9.837934-2 3.060985-2 - 9.679529-2 3.033642-2 

Nu 2.104220 1.920818 1.888373 1.882676 

Note: in this table numbers are represented in exponential form, but without the base; 
i.e. 5.542-l = 5.542 x 10-l. 
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FIG. 2. Error at m + lth iteration vs error at mth iteration. 

shown in Table 4. It can be seen that the number of 

iterations is not very sensitive to either Ra or Pr, at 

least at moderate values of Ra, for 6 < a,,,. 
The initial guess used in the calculations presented 

above was 

*t(z) = 0 (16a) 

T&Z) = $ sin (akz), k = 1, 2,. , K (16b) 

and 

sin 2xz 
T,(z) = 1 - z - ~ 

100 

Figure 4 provides a comparison of the initial guesses to 

Tk with the solution obtained at Ra = 20000, Pr = 
6.7, and K = 4 after 25 iterations. It is clear that this 

guess was a poor one. 
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FIG 3. Number of iterations vs damping factor 

Table 4. E&t of Pr on required number of 
iterations 

Number of iterations 

Pr Ra = lot00 Ru = 2OooO 

0.7 1 23 22 
6.7 22 25 

70.0 25 21 
700.0 25 23 

To demonstrate the impact of the initial guess, 
calculations were made for this same case using 
equation (16) to obtain a solution at Ra = lOOtJO, and 

at 15 000. These solutions were then used as the initial 
guess for a solution at Ra = 20000. Table 5 summar- 
izes these results. It is clear that improved initial 

guesses accelerate convergence. Moreover, for Ra 2 
40000 it is not possible to obtain convergence using 

equation (16), and “continuation” is required. 
Changing the norm by which convergence is mea- 

sured will also alter convergence rate. The convergence 
criterion given by equation (15) requires that solutions 

to (3) and (4) be uniformly continuous on [0, l] x [O. 
11. A frequently used weaker form of convergence is 
convergence in Nusselt number (it can be shown that 
(Nu - 1)“2 provides a measure ofconvergence similar 

to the Lz-norm, which is natural to a Galerkin 
procedure [13]). A comparison of the number of 
iterations required to satisfy the same tolerance, i: = 
0.0001, for the norm given by equation (15) and the 

convergence measure 

%I+, = lNu (m+ l) - Nu’“‘I (17) 

is given in Table 6 for cases with Pr = 0.71. 

As Ra increases, the number of iterations for the 
pointwise norm becomes significantly greater than for 

the L2-norm. This is not unexpected since Lz-solutions 
need not be continuous, while pointwise convergence 

implies uniformly continuous solutions. Higher Ru 
leads to a more complicated flow structure. At higher 
Pr, the Ra at which the two norms differ is higher. For 

example at Pr = 6.7, and Ra = 35000, 39 and 40 
iterations were required for Lz and pointwise con- 
vergence, respectively. 

Fourier series conaergence 
To provide numerical evidence of existence (and 

uniqueness) of solutions to equations (3) and (4) it 
must be shown that convergence of the Fourier 

representations is absolute and uniform. Since the 
basis functions in (5) and (6) are uniformly bounded, 
we define the pointwise norm, 

llfll 1 = maxIBY, :)I 

and it follows that 

(18a) 
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FIG. 4. Comparison of initial guess and solution for T,(z), k = 1, 2, 3.4. Note: all data scaled by 0.31831, 
maximum value of T, initial guess. 

(18b) 
k=Cl 

where C, and C, are normalization constants. 
If the series on the right-hand side of equation (18) 

converge, they do so absolutely and uniformly, by 
definition of I( II 2. Th us, convergence is demonstrated 
by showing that II I) II m and 11 T 11 li are of the order k-P 
with p > 1. Calculations were carried out for K up to 
10 in the Fourier representations. The results are 
shown in Fig. 5 for Ra = 40 000 and Pr = 0.71. The 
series clearly appear to converge. 

The points plotted in Fig. 5 are obtained by scaling 
the max-norm of each mode with the max-norm of the 
mode beyond which convergence is monotone. For the 
I(/r, this was mode # 1; and for the Tk, it was mode # 5. 
The values of k in the figure are referenced to the mode 
used for scaling. We have plotted only results for odd 
modes because these converge more slowly. The r,kk 
converge more rapidly than do the T,; /I I)~ I/ x - 
0(10m6) cannot be shown in the scale of the figure. 
Convergence of /I Tk II II goes somewhat faster than l/k, 

Table 5. Effect of initial guess for solutions at Ra = 20000, 
Pr = 6.7 

Initial guess Number of iterations 

Equation (16) 25 
Solution at Ra = 10000 20 
Solution at Ra = 15 000 13 

so we expect that the series for temperature is ab- 
solutely convergent. 

The absolute convergence of the series represen- 
tations (5) and (6) shows that the rearrangements 
needed to obtain equations (7)-(9) are justified. Hence, 
the right-hand sides of these equations are well defined. 
This is necessary, but not sufficient, for uniqueness of 
solutions for (7)-(9), and thus also for (3) and (4). 
Rigorous sufficient conditions are somewhat difficult 
to obtain, but in fact have been given for the infinite 
domain problem for low values of Ra by Rabinowitz 
[17]. The basic approach was to show that the 
nonlinear integral equations corresponding to equa- 
tions (7) and (9) provide a contractive mapping of a 
certain Sobolev space into itself. Another possible 
approach is to employ extensions of the maximum 

Table 6. Number of iterations 
needed for pointwise- and L2- 

convergence, Pr = 0.71 

Number of iterations 

Ra Pointwise Lz 

5ooo 21 26 
10000 25 24 
15000 31 29 
2oocKl 31 29 
25000 31 31 
3oooo 34 28 
35000 42 37 
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principle theories given in Protter and Weinberger 
[IS]. We obtain numerical evidence of at least local 
uniqueness by computing the same solution with 
several different initial guesses. 

If we accept the conclusions reached from Fig. 5, we 
can consider the error incurred by truncation of the 
series after K terms. Table 7 shows Nu as a function of 
K for several values of Pr at Ra = 40 000 (h = 0.01, Ay 
= 0.01, E = 0.001 and S = 0.4) with pointwise 
convergence required. Convergence is clearly demon- 
strated. Theory presented by Gottlieb and Orszag 
[19] predicts that the convergence should be infinite- 
order, and the table gives some indication of this. 

Two interesting aspects of the results are that lower 
Pr does not converge as fast as high Pr, and con- 
vergence is not monotone. The behavior with Pr is not 
unexpected since the nonlinearity increases with de- 
creasing Pr, as does the potential for turbulence. The 
lack of monotone convergence was unexpected, but 
also found by Catton et al. [6], and Denny and Clever 
[7]. It is worth noting that for Pr = 6.7, thevalue of Nu 
for K = 2 is within a fraction of a per cent of the 
converged value. Hence, if details of the flow and 
temperature field are not required, a two term approxi- 
mation is sufficient. Further, for Ra = 40000 a four 
term approximation yields results well within experi- 
mental accuracy. 

Table 7. Nu dependence on number of terms in Galerkin 
approximation, Ra = 40000 

NU 

Pr K=2 K=4 K=6 K=8 K=lO 

0.71 1.8236 2.1364 2.1423 2.1471 2.1514 
6.7 2.8387 2.8236 2.8356 2.8393 2.8419 

70.0 2.9986 2.9975 2.9887 2.9926 2.9924 
700.0 3.0128 2.9900 3.0028 3.0064 3.0062 

COMPARISON WITH OTHER METHODS 

A comparison between the mixed finite differencee 
Galerkin, Galerkin, and finite difference methods is 
made for computer storage requirements, arithmetic 
operation count and program set-up complexity. The 
comparisons are in many respects qualitative because 
only order of magnitude estimates are available in the 
first two categories, and the last is mostly subjective. 

Storage requirements 
For a pure Galerkin solution it is not uncommon to 

use on the order of 10’ trial functions. This leads to 
about lo6 words of storage for the inner products 
alone. For finite difference methods, in particular for 
methods using ADI, storage of the grid functions 
themselves usually determines the overall storage 
requirements. The matrices corresponding to the lin- 
ear systems to be solved are band matrices. Hence, 
even for a 10’ x 10’ grid only about lo4 words of 
storage are required. Storage requirements for the 
mixed method are 105-lo6 words if modal decom- 
position is not used. For the method used here, the 
main storage requirement comes from the combi- 
nation of grid function solutions to the Galerkin 
ODES and the Galerkin inner products. The first of 
these is O(N K) for an N-point finite difference grid 
and a K-term Galerkin approximation, while the 
second is 0(K3). For K 2 50 and N < 100, storage 
requirements are of the same order as for a full finite 
difference grid. 

Arithmetic operations 
For the Galerkin procedure, the arithmetic comes 

from a calculation of inner products, construction of 
matrix elements and solution of the system of equa- 
tions. The first of the operations is done only once, but 
requires at least 0(K3) arithmetic operations. Set up of 
the matrices usually requires O(K’) arithmetic oper- 
ations. Solution of the system of equations is carried 
out iteratively, and involves O(K3) operations per 
iteration. If good initial guesses are used, only a few 
iterations are needed in a Newton’s method solution 
algorithm. 

A finite difference method on an M x N grid using 
an ADI scheme and solving quasilinearized equations 
(equivalent to Newton’s method) will require the 
solution of N linear systems having O(M) elements, 
and M linear systems having O(N) elements. Thus, 
O(M N) arithmetic operations are needed to solve the 
linear systems, provided a direct band-elimination 
method is employed. In addition, O(M . N) operations 
are needed to update the linear systems at each 
iteration. Hence, the total operation count for a 
solution is O(M . N) if Newton’s method converges 
rapidly. 

A mixed finite difference-Galerkin procedure re- 
quires that O(K) linear systems be solved on an N- 
point finite difference grid at each iteration. The system 
of equations is sparse and requires O(N) arithmetic 
operations for solution, and O(N K’) arithmetic 
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Table 8. Summary of theoretical comparisons 

Method Storage Arithmetic operations Set-up time 

Galerkin 
Finite difference (ADI) 
Mixed finite 

difference-Galerkin 
-O(NK + NK3) 

8 days* 
5 days 

3 days* 

* Quadrature used to calculate inner products 

operations for set up for each K. In addition, 0(K3) 

operations are needed to compute the inner products. 
Therefore, O(NK + NK3 + K3) arithmetic oper- 

ations are needed to obtain a solution. 

Program complexity 
To compare the three methods, all the equations 

needed to implement a computer code were derived, 
and put into a form ready for coding. Only the mixed 
finite difference-Galerkin procedure was coded and 

executed. The other two codes will be produced later 

for more detailed comparisons. Here we only point out 
the difficulties one might encounter with each of the 
methods. 

The two major steps in the Galerkin method are 
calculation of inner products and solution of linear 
systems. The inner products are multiple integrals and 
only calculable analytically for very simple basis sets. 
The parity tables used here are very difficult to 
construct if more than one dimension must be con- 
sidered. The matrices representing the linear systems 
are often non-sparse and frequently mildly ill- 
conditioned. Iterative methods cannot be applied, and 
roundoff error can be difficult to control. Pivoting 
strategies or iterative improvement should be em- 
ployed. Preparation of the equations for coding re- 
quired eight days. 

The major difficulties in implementing a finite 
difference scheme are linearization of the nonlinear 
equations and treatment of the boundary conditions. 
Quasilinearization of partial differential equations 
requires very tedious algebraic manipulations. To set 
up the equations for an ADI finite difference scheme 
took five days. 

The problems encountered in the mixed method 
include those found in both of the other methods. They 
are, however, easier to deal with because the space 
dimensions have been reduced. Determining null inner 
products from parity tables is easily accomplished. 
Quasilinearization for Galerkin ODES is simpler than 
for partial differential equations. The form of the 
Galerkin ODES is similar to the AD1 equations 
resulting from the finite difference method, and the 
boundary conditions present similar difficulties. The 
mixed method required three days to prepare for 
coding. 

Table 8 summarizes the findings of this section. It is 
not possible to give precise performance comparisons 
at this time. We will, however, use the results of [7] to 

Table 9. Time per iteration vs number of modes for Ra = 
20000, Pr = 0.71, Ay = 0.01 and E = 0.001 

Number of 
modes 2 4 6 8 10 

Time (s) 0.059 0.171 0.380 0.756 1.332 

infer that KL z 60 and M = N = 50 to achieve the 
three place accuracy in Nu obtained here for high Pr 
with N N 100 and K = 8. For the Galerkin method, 
approximately 2 x 10’ words of storage and arith- 
metic operations per iteration are needed. The AD1 
finite difference scheme requires only about lo4 words 
of storage and 5 x lo3 arithmetic operations. The 
mixed method requires about 8 x lo3 words of 
storage and lo4 arithmetic operations per iteration. 

In terms of storage requirements, the mixed method 
and the AD1 finitedifference method compare favor- 
ably and are superior to the Galerkin procedure. 
The number of arithmetic operations for the mixed 
method is greater than for a finite difference scheme by 
a factor of two or so; both are considerably less than 
for a full Galerkin procedure. Thus, the performance of 
the mixed method appears to fall between that of the 
AD1 finite difference scheme and a full Galerkin 
procedure. The mixed method is, however, the easiest 
of the three to implement. Further, acceptance of 
slightly less accuracy, K = 2 instead of 8, shifts the 
balance in favour of the mixed method. 

Finally, in Table 9, some timing data are presented 
for direct comparison with other methods. An IBM 
Extended-H FORTRAN compiler in optimizing mode 
was used to generate the object code for these runs. The 
times listed in the table are average central processing 
seconds per iteration for runs on an IBM 3033, 
obtained by dividing total execution time by the 
number of iterations. With h (i.e. N) fixed the increase 
in the number of operations should increase like K3, 
see Table 8. The data of Table 9 seem to indicate an 
O(K*) variation; but experience in the unbounded 
domain problem [13] shows that this holds only when 
K is small enough that the set up operations are still a 
significant fraction of the total operation count. 
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UNE PROCEDURE MIXTE GALERKIN-DIFFERENCE FINIE POUR LA CONVECTION 
BIDIMENSIONNELLE DANS UNE CAVITE CARREE 

R&me-Une mtthode mixte Galerkin-difference finie est utilisie pour resoudre le probleme de la 
convection thermique dam une cavite carree, horizontale, bidimensionnelle et chauffee par le bas. La 
procedure Galerkin est appliquee dans la direction horizontale, les differences finies dans la direction 
verticale. Les r&hats numiriques de cette approche sont compares theoriquement a ceux des methodes 
usuelles des differences finies et de Galerkin. Des donnees specifiques numtriques et analytiques sont donnies 
pour cette procedure mixte dans le cas de plusieurs valeurs de nombre de Prandtl et pour un domaine de 

nombre de Rayleigh. 

EIN GEMISCHTES DIFFERENZEN- UND GALERKIN-VERFAHREN FUR 
ZWEIDIMENSIONALE KONVEKTION IN EINEM QUADRATISCHEN BEHALTER 

Zusammenfassung-Mit einem gemischten Differenzen- und Galerkin-Verfahren wird der Fall der 
therm&hen Konvektion in einem zweidimensionalen quadratischen Behalter, der von unten beheizt wird, 
berechnet. Das Galerkin-Verfahren wird in horizontaler Richtung angewandt, das Differenzenverfahren in 
vertikaler Richtung. Die numerischen Grundziige eines solchen Ansatzes werden theoretisch mit denen 
tiblicher Diflerenzen- bzw. Galerkin-Verfahren verglichen. Spezielle numerisch-analytische 
Rechenergebnisse aus dem gemischten Differenzen- und Galerkin-Verfahren werden fur einige Prandtl- 

Zahlen und iiber einen gewissen Rayleigh-Zahlenbereich vergelegt. 

MCIlO~b30BAHME METOAA KOHErlHbIX PA3HOCTEH COBMECTHO C METOAOM 
FAJIEPKMHA AflR PEUIEHMll 3AAAYM ABYMEPHOH KOHBEKLHIM B KBAAPATHOI? 

OGJIACTM 

AHHOTaUHn - Me-ron KOHeLIHblX pa3HOCTcii B CO’icTaHHll C McTOLlOM raJlepKeHa Mcnonb3yeTCx Ujll 

pe”JeHHR JaLIa’IM TcnilOBOii KOHBeKUHH B AByMepHOk rOpM3OHTanbHOti HarpeBaeMOfi CHM3y KBanparHOti 

o6nacTlt. MeTon ranepKHHa npaMeHaeTcs nna ropA30HTanbHoro nanpaenenan, a MeroB KoneYnbix 
pa-,HOCTei? ~ LUISI BepTHKanbHOrO. npOBejI,eHO ‘IWCneHHOe CpaBHeHHe TaKOrO nOIIXOLla C KamnblM M3 

yKa3aHHblX MeTOllOB B OTLlCnbHOCTH. npCnCTaBneHbl pe3ynbTaTbI pCL”eHW, LU,n HeCKOnbKHX ?HaWHAti 

wcna npaHnTm M 6onbmoro iIHana3oHa VNceJI Penen. 


